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A B S T R A C T

In the era present, due to increasing incidences of a large number of different biotic and abiotic stresses all over
the world, the growth of plants (principal crops) may be restrained by these stresses. In addition to beneficial
microorganisms, use of silicon (Si)-fertilizer is known as an ecologically compatible and environmentally
friendly technique to stimulate plant growth, alleviate various biotic and abiotic stresses in plants, and enhance
the plant resistance to multiple stresses, because Si is not harmful, corrosive, and polluting to plants when
presents in excess. Here, we reviewed the action mechanisms by which Si alleviates abiotic and biotic stresses in
plants. The use of Si (mostly as industrial slags and rice straw) is predicted to become a sustainable strategy and
an emerging trend in agriculture to enhance crop growth and alleviate abiotic and biotic stresses in the not too
distant future. In this review article, the future research needs on the use of Si under the conditions of abiotic and
biotic stresses are also highlighted.

1. Introduction

Food security is one of the fundamental needs that can never be
ignored by any society. The extensive increases in both environmental
damage due to unsuitable agricultural practices, and human population
pressure have the unlucky consequence that global food production
may soon become inadequate to feed all of the world's people. The
world's populace, therefore (approximately seven billion), is envisaged
to surge to roughly 10 billion in the subsequent 50 years (Glick, 2014).
The ever increasing pressure put on agricultural land by burgeoning
human populations has resulted in land degradation, a cultivation shift
to more marginal areas and soil types, and heavier requirements for
agricultural productivity per unit area (Glick, 2014). Climate change
has similarly exacerbated the incidence and gravity of sundry abiotic
stresses (i.e., drought and elevated temperatures), with considerable
harvest reductions reported in major cereal species such as wheat,
maize, rice, and barley (Carmen and Roberto, 2011). In many parts of
the world, precipitation has become less predictable, more intense, and,
due to increasing temperatures, subjected to higher evapotranspiration
(Jewell et al., 2010). Higher yields are also only sustainable with higher
nutrient use, and the heavy demand for fertilizers has caused rising
production costs for farmers worldwide. On the other hand, it is known
one of the most important constraints to agricultural production in

world is abiotic stress conditions prevailing in the environment (Meena
et al., 2017). Various environmental stresses caused by complex en-
vironmental conditions have affected the production and cultivation of
agricultural crops (Meena et al., 2017).

Soil salinization is decreasing annually by about 1–2% of the areas
suitable for agriculture, which is higher in arid and semiarid regions
(Rasool et al., 2013). Drought accounts for about 30% of the world's
land area. Drought stress has many common features with salinity
stress, which is more destructive to agricultural production than salt
stress (Bodner et al., 2015). In present era, heavy metal pollution is
rapidly increasing which presents many environmental problems. The
heavy metal toxicity to various environmental habitats is a major
concern for environmentalists due to their prolonged toxic effects in the
environment (Etesami, 2017). Nutritional imbalance hampers the
growth, development, and yield of plant (Paul and Lade, 2014). Pa-
thogenic microorganisms affecting plant health are a major and chronic
threat to agricultural production and ecosystem stability worldwide
(Compant et al., 2005). These abiotic and biotic stresses might increase
in the near future even because of global climate change. The costs
associated with abiotic and biotic stresses are potentially enormous and
the effects of these stresses may impact heavily on agriculture, biodi-
versity and the environment. Worldwide, it has been estimated that
approximately 70% of yield reduction is the direct result of abiotic
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stresses (Acquaah, 2007). Hence, the urgency of feeding the world's
growing population while combating various environmental stresses
has given plant and soil productivity research a vital importance. In
addition to the use of soil beneficial microorganisms (Etesami and
Beattie, 2017), previous research suggests that the use of silicon (Si) in
agricultural is a sustainable strategy for the alleviation of biotic and
abiotic stresses in various plants (Adrees et al., 2015; Balakhnina et al.,
2012; Cooke and Leishman, 2011; Guntzer et al., 2012; Hernandez-
Apaolaza, 2014; Meena et al., 2014a; Rizwan et al., 2015; Van
Bockhaven et al., 2013; Wang et al., 2017).

Si constitutes a major portion of the soil in the form of silicate or
aluminum silicates. Next to oxygen, Si is the most copious element in
the Earth's crust. Si is present as silicic acid (or Si[OH]4) at con-
centrations between 0.1 and 2.0 mM (pH<9) (Epstein, 1994). It is
present in the soil solution in the form of monomeric or monosilicic acid
(H4SiO4) and is readily absorbed into the root system. Si concentration
varies greatly in a plant's aboveground parts, ranging from 0.1% to
10.0% of dry weight (Liang et al., 2007). The content of Si in plants is
equivalent to or more than the major nutrients N, P, and K, which are
supplied through fertilizers (Meena et al., 2014a). Although it is not
considered essential nutrient for plants, Si is classified by many authors
as beneficial or useful as it might have an important role in metabolic or
physiological and/or structural activity, and improved plant survival of
higher plants exposed to different abiotic and abiotic stresses (Liang
et al., 2015d).

One of the main reasons for not being the essentiality of Si for
higher plants is that a Si-free environment cannot be created currently
due to technical problems as Si contamination from purified water,
chemicals and dust cannot be avoided (Liang et al., 2015d). In general,
it may be expected that the essentiality for Si will be finally recognized
in higher plants according to the newly established definition of es-
sentiality proposed by Epstein and Bloom (2005). Although the soil
abounds with Si, much of this element cannot be taken in wholly by
plants (Zhu and Gong, 2014). Moreover, Si is noncorrosive and pollu-
tion-free, and therefore, Si-fertilizer is a high-quality fertilizer for de-
veloping ecologically green agriculture. Effect of Si on crop growth,
yield and quality has been well documented (Liang et al., 2015a). Si has
been testified to foster progression and biomass, yield, and quality of a
broad range of crops including monocotyledonous crops, some dicoty-
ledonous crops, and some vegetable and fruit crops, which actively take
up and accumulate high amounts of Si in their organs (Liang et al.,
2015d).

The reaction of plants to biotic and abiotic stresses at biochemical,
physiological and molecular levels is very similar to when Si is absorbed
by the roots and transmitted to the shoots, which indicates the active
role of the element in one or more plant defense signaling paths
(Debona et al., 2017). By increasing biotic and abiotic stress resistance,
adjusting pH, and acquiring macro- and micronutrients contained in the
Si-fertilizers, Si has increased the plant growth and yield. In general, the
beneficial effects of Si in stressed plants are more visible than non-
stressed plants (Cooke and Leishman, 2016). Since one of the key
challenges for plant growth is biotic and abiotic stresses which limit
crop yields, the aim of this review was to summarize the action me-
chanisms through which Si could enhance plant resistance to biotic and
abiotic stresses including salinity, drought, heavy metal toxicity, nu-
tritional imbalance, and diseases. This paper shows that Si has sig-
nificant and noticeable effects on alleviating all of the biotic and abiotic
stresses in plants (Fig. 1). According to new findings on the positive
effects of Si on stress tolerance in higher plants, the potential me-
chanisms are described below.

2. Mode of action of Si in alleviating salinity and drought stress in
plants

2.1. Increase in plant root system

Since both water and nutrients are absorbed from the root of plant,
drought and salinity can have a negative effect on plant growth through
reduced root growth (Gupta and Huang, 2014). An increase in the root's
surface area provides additional exposed sites for the absorption of
diffusible ions (Barber, 1995). It has been reported that Si improves not
only root growth (morphological traits such as diameter, area, volume,
root dry bulk, and total and main root lengths) but also the shoot
biomass of salt-stressed plants as well (Kim et al., 2014; Lee et al.,
2010). The former has positive effects on water acquisition (increased
WUEi) and nutrient uptake, while alleviating the stress effects of sali-
nity in plant (Liang et al., 2007). Increases in root growth caused by Si
supplement have also been reported in some studies under drought
conditions (Ahmed et al., 2011; Hameed et al., 2013). The effect of Si
stimulation on growth of roots may be due to increased root elongation
caused by an increase in cell wall extensibility in the growth region, as
observed in sorghum (Hattori et al., 2003).

In the study performed by Wang et al. (2015), the root/shoot ratio
in Si-treated plants was increased, suggesting that Si-mediated mod-
ifications of root morphology may also account for the increased water
uptake ability of Si-treated plants. In certain studies, Si application
enhanced water uptake; although Si did not trigger root progress under
drought stress (Sonobe et al., 2010). This contributes to the stimulation
of nutrient absorption. The augmented water uptake during the addi-
tion of Si in a drought condition is the result of improved root hydraulic
conductance (Hattori et al., 2008a) and root activity (Chen et al.,
2011). Despite the above findings, further study is still required to
clarify the details of the relationship between the impact of Si on root
morphology and Si-enhanced tolerance to salt and drought simulta-
neously.

2.2. Regulation of biosynthesis of compatible solutes

Under stressful conditions such as salinity and drought, compatible
solutes or osmolytes increase in plants mainly proline (Gzik, 1996; Pei
et al., 2010), glycine betaine (Mansour, 1998), polyols (Parida and Das,
2005), etc. The above mentioned compounds may alleviate the limiting
effect of increasing the high ion concentrations on the activity of en-
zymes by stabilizing proteins and their complexes, as well as mem-
branes under environmental stresses (Zhu and Gong, 2014).

There are many reports that Si application can also increase plant
tolerance to salinity and drought stress by modifying the levels of so-
lutes such as proline (Lee et al., 2010; Yin et al., 2013), glycine betaine
(Torabi et al., 2015), carbohydrates (Ming et al., 2012), polyols, anti-
oxidant compounds like total phenolics (Hashemi et al., 2010), total
soluble sugars, and total free amino acids (Hajiboland et al., 2016;
Sonobe et al., 2010), which minimize the osmotic shock created by
NaCl stress due to ion toxicity (Na+ and Cl-). Compatible solutes may
also function as oxygen radical scavengers (Abbas et al., 2015). The
improvement in osmotic adjustment potential in terms of increase in
osmolytes by Si (Pereira et al., 2013) could be highly associated with
high photosynthetic activity and better growth under saline conditions.
There is little information about the relationship between Si and me-
tabolism of compatible solutes and water transfer in plants, which
needs further research in the future (Zhu and Gong, 2014). For future
perspectives, it will also be worthwhile to investigate how Si regulates
the metabolism of the osmolytes under water and salt stress at phy-
siological, biochemical, and molecular levels.

2.3. Regulation of biosynthesis of phytohormones and polyamines

Phytohormones are known to play vital roles in the ability of plants
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to acclimatize to varying environments by different mechanisms (Fahad
et al., 2015). These hormones, as studies generally indicate, serve to
reinforce a plant's capability to hold up against salt stresses (Fahad
et al., 2015; Iqbal et al., 2014). It has also been known that Si appli-
cation may enhance the plant tolerance to drought and salinity stress by
adjusting the levels of phytohormones (Kim et al., 2014; Yin et al.,
2016). Yin et al. (2016) reported that Si application decreased ethylene
in sorghum under salt stress. Exogenously applied gibberellin (GA) can
also alleviate the inhibitory effect of NaCl on plant growth (Chakrabarti
and Mukherji, 2003). Lee et al. (2010) reported that addition of Si to
salt-stressed soybean enhanced the levels of endogenous GA, whereas it
reduced the level of abscisic acid (ABA) and proline. ABA is involved in
altering salt stress-induced gene expression and helps plants survive
under stress conditions (Wang et al., 2001). Hamayun et al. (2010)
found that Si treatment diminished jasmonates (JA) levels while in-
creasing the levels of salicylic acid (SA) in soybean plant shoots. Pei
et al. (2010) also uncovered that adding Si marginally increased ABA
concentration in water-stressed wheat's leaves.

It has been reported that Si is involved in regulating polyamines
(PAs) (LIU and XU, 2007). PAs participate in the defense reaction of
plants against abiotic stresses such as salinity (Gupta et al., 2013).
Growth promotion, cell division, DNA replication, and cell differ-
entiation are some of the plant's processes that PAs are involved in
regulating them (Martin-Tanguy, 2001). It is known that accumulation
of PAs, especially spermidine and spermine, may help to tolerate sali-
nity (Zhu and Gong, 2014). Si plays an important role in the production
and accumulation of PAs such as putrescine, spermidine, and spermine,
thereby helping to increase the plant's resistance to salinity (Wang
et al., 2015; Yin et al., 2016). PAs production may function in this way
via regulating K+ and Na+ transport, improving antioxidant ability and
modifying osmotic potential (Alcázar et al., 2011). The results of the
patch-clamp analysis of the epidermal and cortical protoplasts of sali-
nity-stressed barley root showed that PAs blocked inward and outward
Na+ and K+ currents through non-selective cationic channels, thereby

preventing intracellular accumulation of Na+ ion concentrations (Zhao
et al., 2007); nevertheless, it is important to note that there is currently
no in planta evidence of non-selective cation channels-mediated fluxes
(Coskun et al., 2013). Yin et al. (2014) have reported that Si treatment
improved sorghum's drought tolerance by altering the synthesis of
polyamine and 1-aminocyclopropane-1-carboxylic acid (ACC). Micro-
array research on the influences of Si in rice infested with Magnaporthe
oryzae exhibited Si generating ethylene signaling pathway (Brunings
et al., 2009; De Vleesschauwer et al., 2006). Fauteux et al. (2005)
proposed that Si interacts with several key elements in plant stress
signaling structures, thereby causing resistance. To further under-
standing of the possible role of Si in the metabolism of polyamines,
deeper analysis is required. More research is also needed to clarify the
relationship between these changes and to tolerate salinity stress and
potential involvement of Si in signaling (Zhu and Gong, 2014). In
general, research that is related to Si's repercussions on growth hor-
mones under drought and salinity stress conditions is limited. Study of
how to adjust the levels and initial adaptive responses of phyto-
hormones and secondary metabolites by Si can be an interesting re-
search field in the future (Zhu and Gong, 2014).

2.4. Increase in mineral nutrient uptake and assimilation

Salt stress leads to excessive nutritional deficiency among plants
(Gupta and Huang, 2014). Water deficit also limits nutrient uptake
through roots and subsequent transport to shoots, thereby reducing
nutrient availability and metabolism (Farooq et al., 2009). All plants
require adequate amount of essential plant nutrients for normal growth
and development. Si may play an important role in balancing the up-
take, transport, and distribution of minerals in drought and salinity
stressed plants (Rizwan et al., 2015; Zhu and Gong, 2014). A report
stated that Si treatment expanded the accretion of nutrients such as Mg
(Gunes et al., 2008; Xu et al., 2015), N (Detmann et al., 2012; Hellal
et al., 2012), K (Abdalla, 2011; Chen et al., 2016), P (Emam et al., 2014;

Fig. 1. The multiple action mechanisms of Si in alleviating all of
the biotic and abiotic stresses in plants. For details, see the text
and these references - Adrees et al., 2015; Chanchal Malhotra
et al., 2016; Cooke and Leishman, 2016; Coskun et al., 2016;
Hernandez-Apaolaza, 2014; Imtiaz et al., 2016; Kim et al., 2017;
Liang et al., 2007; Luyckx et al., 2017; Meena et al., 2014; Pozza
et al., 2015; Rizwan et al., 2015; Wang et al., 2017; Zhang et al.,
2017; Zhu and Gong, 2014.
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Farshidi et al., 2012), Ca (Kaya et al., 2006; Mateos-Naranjo et al.,
2013), Fe (Farshidi et al., 2012; Pavlovic et al., 2013), Zn (Pascual
et al., 2016), Mn (Wang and Han, 2007), and Cu (Gunes et al., 2008) in
plant under drought and salt stress.

Some researchers attributed the increased absorption of some nu-
trients, such as Ca2+ and K+, to Si-mediated decrease in plasma
membrane permeability and Si-induced increase in plasma membrane
H+-ATP activity (Kaya et al., 2006; Liang, 1999). Since nutrients are
mostly absorbed from root, it seems that the increase in root surface
area and length can provide more exposed sites for uptake of diffusible
ions (Barber, 1995). It is known that Si can increase the uptake of nu-
trients by increasing root activity (Chen et al., 2011), enhancing water
uptake (Sonobe et al., 2010), and improving hydraulic conductance of
roots (Hattori et al., 2008a). The aforementioned research shows how Si
could alleviate salt and drought stress among plants by not only in-
terfering with Na+ absorption, but by influencing the absorption,
translocation, and eventual allocation of certain nutrient elements
among plants (via balancing nutrient uptake) (Rizwan et al., 2015; Zhu
and Gong, 2014).

It is not also known that the absorption of which nutrient element
by plant is most affected by Si under salinity conditions. Identifying this
issue will help to better manage saline soils (in terms of fertility). More
research is also needed to identify the factors influencing the effect of Si
on the absorption of nutrients (Zhu and Gong, 2014), to study Si-in-
duced root changes on the speciation and dynamics of nutrient ele-
ments in rhizosphere, and to determine whether Si-induced root
changes affect the special form of the nutritional elements or all forms
of an element in rhizosphere.

2.5. Reduction in ion toxicity

Increased concentration of soluble salts, such as NaCl, leads to an
increase in the concentration of Na+ and Cl- ions in soil solution and
subsequently in plant. The high absorption of Na+ by the plant prevents
the absorption of K+ and Ca2+ ions. High levels of Na+ in the plant
damage the plant cells, disrupt cellular metabolism, and result in the
production of reactive oxygen species (ROS), and eventually decrease
the growth of the plant (Mahajan and Tuteja, 2005). Under such con-
ditions, the plants increase their resistance to salinity stress by reducing
the entry of Na+ ion from the external solution into cytosol and in-
creasing the efflux of this ion from cytosol to vacuoles, which lead to
reducing cytosolic Na+ pools (Munns and Tester, 2008) and thereby
prevent leaf metabolic disorders, ion imbalances, and the desiccation of
leaf tissue via osmotic stress (Kronzucker et al., 2013a, 2013b). In ad-
dition, homeostatic maintenance of intracellular K+ pools is effective in
maintaining the proper role of cell under salt stress (Kronzucker et al.,
2013a, 2013b).

Si can also help increase plant resistance to salt stress by reducing
the absorption of Na+ ions (via the Na+-H+ exchangers HvSOS1 and
HvNHX1 in the plasma membrane and tonoplast, respectively) and
increasing K+ ion absorption (via K+-H+ symporters such as HvHAK1)
(Rizwan et al., 2015; Zhu and Gong, 2014). For example, under salinity
stress, a decrease in Na+ absorption and transfer and an increase in K+

uptake in plants of alfalfa (Medicago sativa L.) (Wang and Han, 2007),
bean (Vicia faba L.) (Shahzad et al., 2013), wheat (Triticum aestivum L.)
(Tuna et al., 2008), and sorghum (Sorghum bicolor L.) (Yin et al., 2013)
treated with Si were observed compared to untreated plants. Si also
increases Na+ efflux and K+ influx by activating root plasma mem-
brane H+-ATPase, and tonoplast H+-ATPase, and H+-PPase in salt-
stressed plants (Liang, 1999; Liang et al., 2005b). Increased activity of
these enzymes may affect the structure, integrity and functions of
plasma membranes by influencing the stress-dependent peroxidation of
membrane lipids (Liang et al., 2005b, 2006). The Na+/H+ antiporter
plays an important role in maintaining a low Na+ concentration by
removing Na+ from the cytosol or compartmentalizing it in vacuoles
(Yue et al., 2012), helping maintain osmotic homeostasis (Blumwald,

2000; Zhu, 2001). Despite showing recent physiological evidence of
Na+-H+ antiport activity (Hamam et al., 2016) and in planta K+

fluxes
(Coskun et al., 2014), more research is still needed on measurements of
Na+ fluxes in root tips (Coskun et al., 2016). It is also unknown whe-
ther Si regulates the transport activity or expression of the Na+/H+

antiporter under salinity stress conditions that requires more research
(Zhu and Gong, 2014).

It has been known that the polymerization of Si within the apoplast
(biosilicification in plants) leads to the formation of an amorphous si-
lica barrier (Exley, 2015), which can reduce membrane permeability,
improve structure and stability of root cells, and hinder the penetration
of Na+ ion into the symplast and/or transpiration stream (Guerriero
et al., 2016). Si, by stimulating the transcription of the genes involved
in the synthesis of lignin and suberin, the constituents of forming bar-
riers to apoplastic Na+ transport in roots (Fleck et al., 2010), prevents
the transfer of Na+ into the root of plants. The formation of these ob-
stacles is correlated with higher resistance to salt in plants
(Krishnamurthy et al., 2011a, 2011b). For example, Si deposition has
been proposed in the endodermis to restrict the transport of Na + in the
"transpirational bypass” route from root to stem in rice (Gong et al.,
2006). It has recently been confirmed that Si in rice, a species with a
high capacity for Si uptake and accumulation, prevents the absorption
and transfer of Na+ to the plant's organs through the formation of a
mechanical barrier. However, it should not be assumed that the effect of
this physical barrier on other plants also works in the same way,
especially in plants with lower capacities for Si uptake and accumula-
tion (Wang et al., 2015). It has been reported that the Si applied to
leaves as foliar spray could have translocated to the roots, where it
could strengthen the membranes of root cells by depositing around the
cell walls and changing their permeability to various toxic ions such as
Na+ and Cl- (Abbas et al., 2015). Gong et al. (2006) observed that Si is
deposited on the exodermis and endodermis of rice roots, which dra-
matically decreases apoplastic transport (the so-called transpirational
bypass flow) and therefore Na+ accumulation. For example, Faiyue
et al. (2010) suggested that the lateral root may play a role in bypass
flow because it lacks an exodermis, whereas Si can enhance exodermal
development in rice. Therefore, in rice, both Si-enhanced exodermal
development and Si deposition on the exodermis contribute to de-
creased loading of salt ions into the xylem of roots, resulting in de-
creased salt ion accumulation in shoots (Fleck et al., 2010).

Lately, Yin et al. (2016) reported that Si reduced the absorption and
accumulation of Na+ by modifying some of the important metabolic
processes associated with the regulation of ion chancel. These authors
also reported that PAs metabolism plays a role in this regulation. PAs
regulate homeostasis of ions in plants under salt stress conditions. These
compounds were found to block plasma membranes K+ and non-se-
lective cation channels, which assisted in the retention of intracellular
K+ and the reduction of Na+ influx, thus ameliorating the detrimental
effects of salt stress on plant ionic homeostasis (Velarde-Buendía et al.,
2012; Yin et al., 2016). In the study performed by Wang et al. (2015),
under salt stress, Si induced PAs accumulation and the K/Na home-
ostasis was alleviated. Regarding the confirmation of the role of PAs in
regulating ion homeostasis and thus in enhancing plan tolerance to
salinity stress (Yin et al., 2016), more investigation will be necessary to
determine whether the same mechanism exists in plants under other
environmental stresses.

Si may also improve cell-wall Na+ bounding and thereby decrease
potential Na+ toxicity (Saqib et al., 2008). For example, Si prevented
the transfer of Na+ ion to the aerial parts of salt-sensitive and -tolerant
wheat plants by increasing the binding of Na+ to the cell wall of wheat
roots (Saqib et al., 2008). However, there is little evidence of direct
Na+ complexation by Si, which may establish this potentially important
salt tolerance mechanism (Coskun et al., 2016). From the above studies,
it can be safely concluded that Si mediated selective transport capacity
for K+ over Na+ and resultantly increasing K+/Na+ ratio might be one
of the main mechanisms improving plant growth and yield under salt
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stress (Rizwan et al., 2015; Zhu and Gong, 2014). Overall, mechanisms
of Si-mediated alleviation of salt stress in plants are poorly understood
at the molecular and genetic levels; more genetic experiments (in-
cluding molecular recognition, signal transduction, and gene expres-
sion) are required to determine relationships between Si and salt stress
to study the expression level of genes related to transport, deposition,
and translocation of Na+ and Si in different plant species (Rizwan et al.,
2015). The results of the research may help us to better understand the
physiological and biochemical functions of Si.

2.6. Regulation of the activities of various antioxidant enzymes

One of the immediate responses of plants exposed to salinity and
drought stresses is the production of ROS (e.g., singlet oxygen, super-
oxide anion, hydrogen peroxide, and hydroxyl radicals). The produc-
tion and accumulation of ROS in the plants result in severe destruction
of the cell structure, organelles, and roles (damage to the plasma
membrane and endomembrane systems). Developed a complex anti-
oxidant system to maintain homeostasis through enzymatic anti-
oxidants (e.g., superoxide dismutase, SOD; peroxidase, POD; catalase,
CAT; and ascorbate peroxidase, APX; dehydroascorbate reductase,
DAR; guaiacol peroxidase, GPOD; and glutathione reductase, GR) and
non-enzymatic ones (carotenoids, non-protein amino acids, phenolic
compounds tocopherols, ascorbate, and glutathione, GSH) is one of the
strategies of the plants to alleviate and repair the damage caused by
ROS (Kim et al., 2017). The plants grown under salt stress suffer from
water shortages, resulting in the overproduction of ROS in the plants
(Liang, 1999).

By modulating the plant antioxidant defense systems, Si can also
alleviate oxidative damage in plants under salinity and drought stress
(Kim et al., 2017). Following the treatment of salinity and drought-
stressed plants with Si, an increase in the activity of key enzymes SOD,
POD, CAT, APX, and GR as well as GSH concentration was observed
(Kim et al., 2017; Zhu and Gong, 2014). Si has been reported to prevent
the damage of membrane caused by the formation of malondialdehyde
(MDA) (involvement in lipid peroxidation of membranes) (Zhu et al.,
2004) by regulating antioxidant defense in plants (Zhu and Gong,
2014). For example, Si has also been shown to decrease the con-
centration of MDA, the end-product of lipid peroxidation, in salt-
stressed barley (Liang et al., 2003), maize (Moussa, 2006), and grape-
vine rootstock (Soylemezoglu et al., 2009), and thus may help to
maintain membrane integrity and decrease membrane permeability
(Liang et al., 2015d). Khoshgoftarmanesh et al. (2014) showed that the
concentration of MDA was positively correlated with Na+ absorption in
salt-stressed cucumber, but had a negative correlation with Ca2+ and
K+ absorption in the Si-treated cucumber plant. However, how Si
mediates this response is unclear. Under drought stress, Si effect on
antioxidant enzymes in plants varies not only among plant species but
also at different growth stages of the same plant (Gong et al., 2008).

Overall, based on the above studies and available findings (Kim
et al., 2017; Zhu and Gong, 2014), it can be concluded that Si can al-
leviate the oxidative damage in plants by modulating antioxidant de-
fense systems (both enzymatic constituents and non-enzymatic ones).

Despite the above findings, the interactions between the plant an-
tioxidant enzyme system and Si remain poorly understood, and a
deeper analysis at the transcriptomic level is necessary to understand
the mechanisms responsible for the Si-mediated regulation of stress
responses (Kim et al., 2017). Further studies are also needed to explain
how Si starts these responses (Zhu and Gong, 2014). In addition, many
of these results are obtained from hydroponics experiments, and thus,
further trials under field conditions are required.

2.7. Maintenance of plant water balance

In plants under drought and salt stress, the amount and absorption
of water by the plant decreases. High concentrations of salt in soil

solution result in increased osmotic stress, which limits water absorp-
tion by the plant and in turn affects leaf water content, stomatal con-
ductance, leaf growth (acceleration of leaf senescence and leaf death)
and photosynthesis (decrease in chlorophyll concentrations) and ulti-
mately results in a reduction in plant growth (Munns and Tester, 2008).
Primary stress that occurs in plant in saline soil is osmotic stress that
has an immediate effect on plant growth (Horie et al., 2011). Plants
have a specific strategy to maintain water balance when stressed (Horie
et al., 2011). Osmotic adjustment helps plants to retain water despite
low water potential, and thus to alleviate osmotic stress (Osakabe et al.,
2014). There are reports that show that Si can improve water status and
WUE in many plant species (Wang et al., 2015; Zhu et al., 2015), al-
leviating salt-induced osmotic stress (Chen et al., 2014). Furthermore,
several studies have reported that plants treated with Si maintain a
higher stomatal conductance and transpiration rate, stomatal con-
ductance, leaf water content, and root and whole-plant hydraulic con-
ductance (Liu et al., 2015; Yin et al., 2013).

In plants, the limiting factor for water transfer is mainly in roots
(Rubio-Asensio et al., 2014). The hydraulic conductivity of root in-
dicates the water absorption capacity and depends mainly on the root
anatomy, root permeability, and the driving force (Sutka et al., 2011).
One of the primary reactions of the plants to osmotic stress is the re-
duction of root hydraulic conductivity (Boursiac et al., 2005). It has
been reported that Si reduces salt-induced osmotic stress by increasing
root hydraulic conductivity (Liu et al., 2015; Wang et al., 2015). In a
study, Zhu et al. (2015) found that Si can improve salt tolerance of
cucumber plants through enhancing the root water uptake ability. The
amount and activity of water channels, known as acupoinins, in cell
membranes play an important role in regulating water absorption,
especially under stress conditions (Liu et al., 2014). Si is involved in
increasing root hydraulic conductance through increased expression of
plasma-membrane intrinsic protein (PIP) aquaporins, which may in
part contribute to the increase in water uptake (Liu et al., 2015; Zhu
et al., 2015) and reduce oxidative stress and membrane damage (Shi
et al., 2016). In studies, Liu et al. (2014), Liu et al. (2015), and Wang
et al. (2015) observed that Si increased the root hydraulic conductance
under salt stress. These authors attributed this effect to Si-mediated
transcription up-regulation of some aquaporin genes (increased the
aquaporin expressions). The produced aquaporins, in turn, lead to in-
creased root hydraulic conductivity, absorption of water, and the entry
of Si into the cells (Rios et al., 2017). Although the mechanisms by
which Si nutrition affects aquaporin expression and activity have yet to
be resolved (Coskun et al., 2016), determining whether other me-
chanisms are also involved will also require further study.

Oxidative stress causes plasma membrane injury and affects the
activity of aquaporins (negative regulation of the activities of plasma
membrane aquaporins) (Liu et al., 2015) and subsequently root hy-
draulic conductance. Benabdellah et al. (2009) observed that high
concentrations of exogenous H2O2 affected the root hydraulic con-
ductance, and the changes of hydraulic conductance were inversely
matched with the changes of membrane electrolyte leakage and ROS
level. It has been found that Si can increase water stress tolerance of Si-
treated plants by decreasing oxidative damage of membrane and sub-
sequently increasing root hydraulic conductance (increased the root
water uptake ability) (Liu et al., 2015; Shi et al., 2016). It is not clear
how oxidative damage exactly affects the root hydraulic conductance. It
is reasonable to assume that oxidative damage causes a malfunction of
the plasma membrane and therefore may affect the performance of
plasma membrane aquaporins, which play an important role in root
water absorption, especially under water pressure (Liu et al., 2014;
Vandeleur et al., 2009).

It has been shown that H2O2 plays a role in the formation of suberin
lamellae (Razem and Bernards, 2002). Suberin forms a hydrophobic
barrier in endodermis and exodermis of roots (Enstone et al., 2002). In
the study of Shi et al. (2016), Si developed less suberin lamellae in the
roots of water stressed tomato, and therefore resulted in higher water

H. Etesami, B.R. Jeong Ecotoxicology and Environmental Safety 147 (2018) 881–896

885



permeability. Fleck et al. (2010) also observed that Si enhanced sub-
erization and lignification in the roots of rice. However, whether Si
enhances suberization in the roots of other plants remains unclear. The
effects of Si and H2O2 on the formation of suberin lamellae also need to
be investigated under water stress conditions. Further studies are
needed to explore, how Si triggers the antioxidant defense in various
plants under water stress.

In addition to the mentioned mechanisms (effect on hydraulic
conductance and water transport by modulating aquaporin expression/
activity and expression of salinity resistant genes), Si can affect the
transfer of water and facilitate the absorption of root water by adjusting
the osmotic potential of cells through the accumulation of osmolites
(Lee et al., 2010; Ming et al., 2012; Sonobe et al., 2010), increasing root
hydraulic conductivity. The referenced authors suggested that this os-
motic regulation can be a consequence of soluble sugars and amino
acids including glutamic acid and alanine. Under stress conditions, the
Si-mediated accumulation of compatible acids (such as proline) may
reduce the osmotic potential of the cell and thus form an osmotic gra-
dient (an increase in osmotic driving force in plant). Sonobe et al.
(2010) expressed that Si's inclusion in the culture solution could im-
prove water absorption by root under water-deficit stress through ac-
tive accumulation of soluble sugars and amino acids. However, in the
study of Wang et al. (2015), leaf and root osmotic potentials were not
decreased by Si. This result demonstrates that osmotic adjustment
cannot be the only mechanism by which Si helps to maintain water
balance in plants.

Leaf water status is determined using water absorption and trans-
port, as well as transpirational loss (Shi et al., 2016). The change in the
rate of transpiration is another mechanism by which plants can regulate
water balance (Wang et al., 2015). Under the conditions of osmotic
stress, the closure of the stomata is an immediate reaction of the plant,
which leads to a reduction in the water loss (Cornic, 2000). The in-
crease in leaf water content and water capacity in the presence of Si
under drought stress state might be caused by the leaves’ thickness in
comparison to the control plant that did not receive Si treatment (Gong
et al., 2003). Moreover, the rise in leaf water potential can be the result
of Si's deposition in leaves (the creation of Si cuticle double layer on a
leaf's epidermal tissue), decreasing transpiration from their surface
since water molecules may not readily escape from the surface because
of Si treatment (Ahmed et al., 2014; Lux et al., 2002). Gao et al. (2006)
observed that Si application enhanced WUEi in drought-stressed maize
by reducing leaf transpiration rate through stomata and water flow
ratio in xylem vessels which indicated that Si influences stomatal
movement in plants (Gong and Chen, 2012; Kurdali and Al-Chammaa,
2013). The authors suggested that Si's deposition on the root cell wall
might influence the wetting features of xylem vessels, as well as water
or solute transport. A similar phenomenon was also observed in rice
(Ming et al., 2012). However in some cases, it is reported that although
the transpiration rate of plants has not decreased, the plant water status
is better in Si-added plants. For example, in corn, Si supplementation
does not affect the leaf cuticular-transpiration, but significantly de-
creases the stomatal transpiration (Gao et al., 2006). Recently studies
indicate that Si-mediated increase in drought tolerance may be asso-
ciated not only with leaf transpiration but also with root-water ab-
sorption (Shi et al., 2016). Based on the results of recent studies (Katz,
2014; Liu et al., 2015; Shi et al., 2016), it can be concluded that the Si
effect is not proportional to its accumulation in the plant, and the low Si
accumulation does not mean its low function. In addition, reducing the
transpirational loss of water is not a global mechanism for Si-mediated
improvement of water status in plants (Shi et al., 2016). It has been
reported that the effect of Si on plant transpiration may be related to
plant species and environmental conditions (Shi et al., 2016), so that in
some plants, after the addition of Si, transpiration is increased (Chen
et al., 2011), in some others, transpiration is reduced (Gao et al., 2006),
and in others, no change in transpiration is observed (Hattori et al.,
2008b). Such variations suggest that there are different strategies

among species, because they balance the amount of water absorption
and the amount of water loss in the leaf surface. The main mechanisms
behind these strategies and the responses to Si need to be further ex-
plored and analyzed (Coskun et al., 2016).

During a salt-stressed condition, the diminution of relative water
content (RWC) of leaf is also a wide-ranging reaction among plants,
implying that they are experiencing osmotic stress (Fahad et al., 2015).
It was found that the treatment of Si enhanced RWC of leaf among such
treated plants (Esmaeili et al., 2015; Zhu et al., 2015). By improving
water storage in foliage, Si can diminish the salt toxicity to plants
(Romero-Aranda et al., 2006). Greater water content contributes to salt
dilution, resulting to a decline in salt toxicity and improvement in plant
growth (Romero-Aranda et al., 2006; Tuna et al., 2008). The hydro-
philic nature of Si (SiO2-nH2O deposition, known as phytoliths, in cells
walls and cell lumens of all plant tissues may to some extent contribute
to water restoration in salt-stressed plants (Romero-Aranda et al.,
2006). This is interesting to be found that whether a Si layer exerts a
proportionately greater effect in enhancing resistance in water stressed
Si treated plants than in unstressed Si-treated plants. Previous re-
searchers have shown that Si may also affect cell wall properties of
xylem vessels (Diogo and Wydra, 2007). Si-induced changes in the
characteristics of the cell wall of xylem vessels can regulate water
transport and thus affect plant water relations. It has been reported that
improved structural stability due to the binding of Si with cell-wall
hemicellulose can be beneficial in conditions of water shortage for the
plant (Ma et al., 2015).

The above studies clearly show that Si application can improve
plant water balance under salinity and drought induced osmotic stress
conditions. However, more detailed studies are still needed to discover
the Si-mediated mechanisms of osmotic regulation in plants, especially
at the molecular and genetic levels. Although much work has been done
to find out the Si-mediated salinity and drought tolerance mechanisms,
most of the previous research has been conducted on Si-accumulating
plant species (Zhu and Gong, 2014). Investigating the role of Si in low
Si-accumulating plants will help clarify the biochemical role of Si and
understand the exact mechanisms for Si-mediated drought tolerance in
plants other than its physical role (e.g., by Si deposition) in Si-accu-
mulating plants (Shi et al., 2016). As noted by Katz (2014), the effect of
Si is not proportional to its accumulation in plants, and the low Si
concentration does not mean its low function in the plants. Further-
more, little information is available about this possible relationship
between Si-mediated changes in root hydraulic conductance and H2O2

accumulation under water stress (Shi et al., 2016). The study of this
relationship in less Si-accumulating plants can also be interesting. Due
to the complexity of the relationship between Si addition and tran-
spiration in drought stressed plants, more comprehensive studies are
needed to clarify the regulatory role of Si on the metabolism of water
throughout the plant and on root water uptake in the future.

Aside from the research aspects mentioned above, these studies
were performed with potted seedlings or polyethylene glycol-stressed
seedlings, in which the experimental duration was relatively short.
However, little work has been done in the field, which requires more
studies. Because the responses of the plant to gradual water stresses,
such as field conditions, is different from these responses to short-term
water stresses in greenhouse conditions (Zhu et al., 2005). Supple-
mentary experiments are also needed to investigate how exogenous Si is
involved in regulating water movement in all plants under salinity and
drought stress conditions simultaneously (Zhu and Gong, 2014).

2.8. Modification of gas exchange attributes

Photosynthetic gas exchange characteristics in plants are highly
sensitive to salt stress (Gupta and Huang, 2014). However, the exo-
genous treatment of Si was found to advance the gas exchange features
in many plant types subject to salt stress (Liu et al., 2015; Rizwan et al.,
2015) and drought stress (Gong and Chen, 2012; Rizwan et al., 2015).
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For example, in the study of Xie et al. (2015), Si enhanced maize tol-
erance to salinity stress under filed conditions by increasing photo-
synthetic rate, stomatal conductance, and intercellular CO2 concentra-
tions and decreasing transpiration rate. Stomata regulate the plant's
water level by controlling transpiration rate, especially under drought
stress (Rizwan et al., 2015). Following the treatment of plants with Si
under drought conditions, a decrease in leaf transpiration rate and an
increase in the photosynthetic rate, stomatal conductance (Abdalla,
2011; Chen et al., 2011), higher water uptake (Hattori et al., 2005), and
WUEi (Gao et al., 2006) of the plants were observed. The above studies
show that Si can increase photosynthesis, nutrients uptake, and ulti-
mately plant growth and biomass under drought and salinity conditions
through increasing gas exchange and decreasing Na+ uptake by de-
creasing transpiration and other mechanism might be involved in Si-
mediated reduction in Na+ uptake by plants. Comprehensive studies
are required to examine other mechanisms of Si-mediated regulation of
gas exchange characteristics under drought and salinity stress in the
future. As an example, there is little information on the role of Si in
diurnal changes in gas exchange characteristics of plants (Rizwan et al.,
2015).

2.9. Regulation of lignin biosynthesis

Si is involved in regulating of lignin biosynthesis (LIU and XU, 2007;
Zhu and Gong, 2014). Salinity increases the activities of certain ROS-
scavenging enzymes related to greater lignin biosynthesis, which in
turn hinders plant growth (Ortega et al., 2006). Hashemi et al. (2010)
discovered that added Si diminished canola's lignin content. Si's capa-
city to decrease tissue lignification may lead to the extensibility of cell
walls, leading to plant development under stress environments
(Dragišić Maksimović et al., 2007; Hattori et al., 2003). That Si in a
plant helps to synthesize lignin (e.g., deposition of lignin in scler-
enchyma cells of rice) (Fleck et al., 2010) and in another plant prevents
lignin synthesis (e.g., decreases the lignin content in canola) (Hashemi
et al., 2010) is related to the ability of these plants to absorb and ac-
cumulate Si, which requires further study in the future. In addition,
further investigations are needed to clarify the relationship among
these changes (Si-mediated increase or decrease of lignin synthesis in
stressed plants), stress tolerance, and the possible involvement of Si in
signaling.

3. Mode of action of Si in alleviating heavy metal toxicity stress in
plants

3.1. Diminution in plants’ metal absorption

One of the major effects of Si on the reduction of metal toxicity is
reducing the metal uptake and transport in plants. In previous studies,
reduced uptake and translocation of metals and subsequently increased
tolerance to toxic metals in Si-treated plant species have been reported
by many researchers (Anwaar et al., 2015; Keller et al., 2015; Tripathi
et al., 2015). The polymerization of H4SiO4 inside apoplast (biosilici-
fication in plants) has been known to result in the formation of an
amorphous silica barrier (Exley, 2015), which can hinder the penetra-
tion of potential toxicants such as Al, Mn, Cd, and Zn into the symplast
and/or transpiration stream (Guerriero et al., 2016).

This decrease in metal uptake in the presence of Si can be explained
in many ways. For example, Si may trigger the production of root
exudates which can chelate metals and reduce their absorption by roots
(Kidd et al., 2001). In addition, this reduction in metal uptake can also
be explained by the fact that Si reduced the apoplasmic transport of
metals by decreasing free metal concentration in the apoplasm (Iwasaki
et al., 2002; Rogalla and Römheld, 2002). Furthermore, the physical
limitation formed by the deposition of Si in the endoderm region may
reduce the cell wall's porosity in the inner root tissues, thus decreasing
the metal concentration in the xylem (da Cunha and do Nascimento,

2009; Keller et al., 2015). Similarly, Si decreased apoplasmic transport
of metals through the enhanced adsorption of metals on the cell walls
(Liang et al., 2007; Ye et al., 2012). Si accumulation in the roots en-
dodermis may reduce the mobility of heavy metals (da Cunha and do
Nascimento, 2009; Keller et al., 2015). A diminution in metal absorp-
tion via plants is moderately linked to the development of apoplasmic
obstacles and the maturation of vascular tissues in the root (Greger
et al., 2011; Vaculík et al., 2012). According to the studies listed above,
it can be concluded that Si reduces the toxicity of heavy metals in plants
by reducing the metal absorption and blocking the transfer of metals in
plants.

3.2. Enhancement in gas exchange facets and photosynthetic pigments

Positive effects of Si on chlorophyll biosynthesis and photosynthetic
machinery under metal toxicity have been widely reported (Adrees
et al., 2015; Imtiaz et al., 2016). It was found that Si application in-
creased the contents of chlorophyll a, chlorophyll b, and carotenoid in
leaves and enhanced the activities of gas exchange features (net pho-
tosynthetic quotient, stomatal conductance, transpiration ratio, and
WUEi) under conditions of heavy metal stress (Farooq et al., 2013;
Hussain et al., 2015; Rizwan et al., 2012; Tripathi et al., 2015).

3.3. Changes in plant growth, biomass, and mineral nutrient supply

Mineral nutrients are the major constituents of the plant structural
component and provide mechanical, biochemical, and physical
strengths to the plants. Mineral nutrients are also essential in the de-
velopment of plants, with heavy metals being able to intervene with the
absorption and movement of crucial nutrients, thereby disturbing mi-
nerals’ nutritive composition. Si can decrease metal toxicity among
plants by intermingling with other elements. Si serves a chief role in the
uptake of nutrients by plants under metal stress. Si plays an important
role in the absorption of nutrients by plants under metal stress. Si ap-
plication increased the content and accumulation of micronutrients
(e.g., Zn, Fe and Mn), and macronutrients (e.g., Ca, Mg, P and K) by
plants under metal stress (Adrees et al., 2015; Keller et al., 2015;
Mehrabanjoubani et al., 2015; Tripathi et al., 2015). Feng et al. (2010)
observed that Si supply diminished the limiting effects of metals on the
enzymes in plants’ nitrogen metabolism. This covers nitrogen reductase
(NR), glutamine synthetase (GS), glutamate synthase (GOGAT), and
glutamate dehydrogenase (GDH). Si, by increasing the growth and
biomass of plants and boosting the xylem sap under metal stress, may
decrease metal toxicity by a dilution effect (the same uptake, but larger
biomass) (Adrees et al., 2015; Gu et al., 2012).

3.4. Immobilization of toxic metal in the growth media

Si application can immobilize toxic metals in soil by increasing soil
pH and changing metal speciation in soil (Adrees et al., 2015). The Si-
influenced mitigation of metal toxicity in plants might be the result of
an external plant effect based on decreasing the availability of phyto-
toxic metals in the culture media (da Cunha and do Nascimento, 2009;
Naeem et al., 2015). It has been shown that Si application in soil affects
the soil properties which in turn controls heavy metals availability to
plants (Liang et al., 2007; Rizwan et al., 2012). Si can also change the
speciation of metals in soil solution by the formation of silicate com-
plexes, the formation of Si polyphenol complexes, and the formation of
insoluble metal silicates in soil (Gu et al., 2012; Liang et al., 2007; Shim
et al., 2014). A.-m. Zhang et al. (2013) reported that addition of Si
markedly decreased the proportion of exchangeable heavy metals in
metals-contaminated soil by increasing the proportion of precipitation-
bound and organic matter bound metals fraction, thus reducing metals
availability in the soil.
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3.5. Expanding the antioxidant defense structure

Oxidative stress may occur in plants when they are exposed to heavy
metal stress (Kim et al., 2017). On the other hand, by lowering the
production of ROS and by enhancing antioxidant enzymes’ activities
(e.g., SOD, POD, CAT, and APX), Si application may reduce oxidative
stress in plants (Adrees et al., 2015; Anwaar et al., 2015; Kim et al.,
2017). Above literatures showed that Si application could notably in-
crease plant defense system by reducing oxidative damage and altering
the activities of antioxidant enzymes up to a certain level of metal
stress.

3.6. Plant compartmentalization

Several studies have observed the compartmentation of metals in
shoots and roots of plants to understand Si detoxification mechanisms
in plants (Adrees et al., 2015; Imtiaz et al., 2016). It was found that Si
enhanced metal concentrations in plant roots in comparison to shoots
(Keller et al., 2015; Naeem et al., 2015; Rizwan et al., 2012; Ye et al.,
2012). Sequestration of heavy metals in metabolically less active cell
compartments such as the cell walls might be an important mechanism
for Si-mediated heavy metal tolerance in plants (Dragišić Maksimović
et al., 2012; Liu et al., 2009; Ye et al., 2012). Doncheva et al. (2009)
stated that a surplus of Cu that is sequestrated in non-photo-
synthetically and active leaf epidermal cells could be a Mn tolerance
system in maize. Thus, Si localization in the root endodermis might
function as an obstacle to inhibit the penetration of metals into cells.
Taken together, effects of Si on metal compartmentation in the leaves
and roots might be the crucial mechanism in metal uptake and detox-
ification in plants.

3.7. Si's co-precipitation with heavy metals

The co-precipitation of Si with metals in plants might be a me-
chanism which reduced metal toxicity in plants (Adrees et al., 2015).
Many studies reported Si and metal co-precipitation in leaves and roots
of many plant species (Gu et al., 2012; Oliva et al., 2011; You-Qiang
et al., 2012). Previous studies also showed Si and metal complex for-
mation in the roots (da Cunha and do Nascimento, 2009; Ma et al.,
2015).

3.8. Chelation process

The mechanisms by which Si mitigates heavy metal stress in plants
might be related to the chelation of flavonoid-phenolics or organic acids
with metals (Collin et al., 2014; Wang et al., 2004). Furthermore, Si
addition increased citrate, malate, and aconitate concentration in roots
of plant (influencing root exudates) (Adrees et al., 2015; Fan et al.,
2016). Authors mentioned that Cu could shape a complex with organic
acids and decrease heavy metal translocation to shoots (Collin et al.,
2014; Keller et al., 2015). Such studies showed that the Si-facilitated
release of chelates might be a mechanism which could decrease the
toxic impacts of metals in plants up to a certain extent. However, fur-
ther studies are needed to highlight the role of Si-mediated chelation of
metals in Si-accumulating and non-accumulating plants.

3.9. Physical alterations in plants

Si supply increased length of leaves, leaf area, number of leaves per
plant, total root length, total root surface area, root volume and number
of root tips, and length of primary seminal root under heavy metal
stress (Anwaar et al., 2015; Bokor et al., 2014; Farooq et al., 2013;
Keller et al., 2015). It has also been found in some reports that Si
treatments accelerate the generation of suberin lamellae and Casparian
bands, along with the development of root vascular tissues and lig-
nification. Si increased the shaping of the tertiary endodermal cell

walls, if compared with metal treatments alone. The enhanced im-
provement of endodermal apoplasmic obstructions with the addition of
Si in plant was also exhibited (Lukačová et al., 2013; Tripathi et al.,
2015; Vaculík et al., 2012). There is evidence that Si ameliorates the
ultra-structural disorders caused by metal stress in many plant species
(Ali et al., 2013). Si is then of importance in protecting photosynthetic
machinery from being impaired under metal stress. Si protected the
chloroplast ultrastructure from disorganization due to stress effected by
Cd, Cr, and/or Zn in plants such as rice, cucumber, maize, and barley
(Feng et al., 2010; Song et al., 2014). Added Si decreased the perme-
ability of plasma membrane of leaf cells of barley and maize under
excess Zn (Kaya et al., 2009; Liang et al., 1996).

As a conclusion, Si treatment under metal stresses protected the
plant configuration, which might be due to compartmentalization, co-
precipitation, and/or chelation of heavy metals in different plant parts,
leading to decreased concentrations of free metal ions while generating
increased plant growth and biomass (Abbasi et al., 2015; Imtiaz et al.,
2016).

It is noteworthy that the generalization of Si-mediated alleviation of
metal toxicity should be made with caution, because the mechanisms
used by Si to reduce the stress of heavy metals in plant depend on plant
species, genotypes, metal elements, growth conditions, duration of the
stress imposed, etc. (Adrees et al., 2015). For future perspectives, it will
be worthwhile to investigate the mechanisms of Si mediated alleviation
of heavy metal stress at the molecular and genetic levels (e.g., to study
expression level of genes related to transport, deposition, and translo-
cation of metals and Si in different plant species), although there are
some reports about Si application in activating the genes of heavy
metal-stressed plants responsible for heavy metal tolerance (Bokor
et al., 2014; Khandekar and Leisner, 2011; Ma et al., 2015). In most
research, the effect of Si on alleviating heavy metal stress has been
studied only on a heavy metal, under hydroponic conditions and in a
short term (Adrees et al., 2015), which can lead to an overestimation of
metal absorption and translocation. Therefore, it is necessary to study
the effect Si under natural conditions in the presence of a set of heavy
metals and in a long term, because the ability of silicates to sequester
heavy metals over time is likely to decrease.

4. Mode of action of Si in alleviating nutritional imbalance stress
in plants

4.1. Macronutrients (N, P, K, Ca, and Mg)

The application of Si-fertilizers significantly increased the con-
centration of N in plants. Thus, the yield response to Si may be related
to an improved uptake of this nutrient (Huang et al., 1997). Better
uptake of N and Ca by cowpea and wheat, along with improved no-
dulation and evidently enhanced N2 fixation in cowpea were observed
as the plants were fertilized with extending doses of sodium metasili-
cate (50–800 mg Si kg−1) (Mali, 2008; Mali and Aery, 2008). Detmann
et al. (2012) verified that Si augmented N use efficiency and trans-
formed primary metabolism by stimulating amino acid remobilization.
Si has also been said to alleviate stress from excessive N (Liang et al.,
2015b). It has been reported that a decrease of erectness in rice leaves
following excess of N application can be alleviated if Si was applied to
the nutrient formula (Singh et al., 2006).

It is well-known that P availability increases following Si-fertiliza-
tion in various graminaceous species (Ma, 2004; Singh et al., 2006). The
role of Si in P absorption in plants was one of the primary effects of Si
ever evaluated (Eneji et al., 2008). The outcome of Si under P defi-
ciency could be the result of an in planta mechanism, indicating an
enhanced utilization of P, probably via an increase in phosphorylation
(Cheong and Chan, 1973) or a decline in the absorption of unnecessary
Fe and Mn (Ma and Takahashi, 1990; Ma, 2004). In addition, the
beneficial effects of Si on P availability have been ascribed to a com-
petitive sportive interaction and exchange of these two elements
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(Smyth and Sanchez, 1980) such as an enhancement of soil P avail-
ability by increasing soil pH (Owino-Gerroh and Gascho, 2005), de-
crease of metal uptake (e.g., Mn, Fe, Al and Cd), interactions with ca-
tionic metals such as Fe and Mn (MA and Takahashi, 1990), and
increase of water-soluble P concentration (Eneji et al., 2008) which
indirectly improve P utilization by plants (Liang et al., 2005a; MA and
Takahashi, 1990). Sorption of P is the major cause of P deficiency in
acidic soils. Phosphate ions (H2PO4

−) are specifically adsorbed onto
hydrated Fe and/or Al oxides by replacing OH groups from the co-
ordination sphere of the metals. The chemical competition between the
anions H2PO4

− and silicate (H3SiO4
−) for the sorption sites has been

demonstrated in soils resulting in displacement of Si by P, and vice
versa (Smyth and Sanchez, 1980). Furthermore, Si has been found to
alleviate excess stress of P (Liang et al., 2015b). When P was applied in
excess amounts, Si restricted P uptake and the appearance of chlorosis,
apparently through lowering the rate of transpiration (Ma et al., 2001;
Singh et al., 2006).

The application of Si can influence the availability of K in the soil
and nutrient contents in plants (Chen et al., 2016; Kaya et al., 2006). In
a study, Miao et al. (2010) ascertained that the application of Si- to K-
deficient soybean (Glycine max) plants improved both internal K status
and plant growth. Si similarly assuaged K-deficiency-induced mem-
brane lipid peroxidation and oxidative stress by activating antioxidant
enzymes. In a report by Mali and Aery (2008), K uptake in hydroponics
and in soil increased even at depleted Si dilutions upon the establish-
ment of H+-ATPase. Recently Chen et al. (2016) showed that Si mod-
erated K's deficiency by improving the plant-water status.

The application of Si increased the levels of Ca and Mg in soil and
plant (C.H. Huang et al., 2011; H.-R. Huang et al., 2011; Kaya et al.,
2006; Mali and Aery, 2008). The improved absorption of Ca may be
ascribed to a diminution in plasma membrane penetrability and an
increase in the movement of plasma membrane H+-ATPase due to the
addition of Si (Kaya et al., 2006; Liang, 1999).

4.2. Micronutrients (Fe, Mn, Cu, Zn, and B)

Several studies on the effect of Si on micronutrient deficiency are
found in the literature (Bityutskii et al., 2014; Gonzalo et al., 2013;
Hernandez-Apaolaza, 2014; Pavlovic et al., 2013). It has been reported
that the addition of Si to the nutrient solution is able to mitigate Fe
deficiency-caused chlorosis in plants (Bityutskii et al., 2010; Gonzalo
et al., 2013; Pavlovic et al., 2013). A propositioned hypothesis denotes
that Si addition increases the oxidation ability of rice roots, as well as Fe
oxidations to insoluble ferric compounds (You-Qiang et al., 2012),
forming the Fe plaque. Although oxide-bound ions in soils are re-
peatedly and relatively inaccessible to plants, the root–plaque–bound
ions may become available for plant uptake, rendering the metal so-
luble yet again in the proximate environs of the root, if the plant exudes
phytosiderophores that chelate the metal or dissolve the iron oxide
(Zhang et al., 1998). You-Qiang et al. (2012) also concluded that Si
increased Fe transport from the root to the shoot. A study showed that
the increase in expression of Si transporters after Si addition might
impact Fe uptake and translocation, improving Fe nutrition under de-
ficiency conditions (You-Qiang et al., 2012). High accumulation of Fe in
the roots was observed when plants were treated with Si (Bityutskii
et al., 2014; Gonzalo et al., 2013; Pavlovic et al., 2013), which is at-
tributed to a high amount of Fe in the root apoplastic pools (Pavlovic
et al., 2013) or to its precipitation at root surfaces. Another hypothesis
is that Si probably contributes to maintaining balances in other mi-
cronutrients, such as Fe/Mn ratio (Pich et al., 1994), which is also
beneficial in enhancing chlorophyll synthesis, providing a possible ex-
planation for the stimulation in growth of Fe-deficient plants supplied
with Si (Bityutskii et al., 2014; Gonzalo et al., 2013; Pavlovic et al.,
2013). Application of Si also facilitated mobility and xylem transloca-
tion of Fe toward the shoot, along with tissue accumulation of Fe-mo-
bilizing compounds such as citrate (in xylem sap, root, and shoot

tissues) or catechins (in the roots) (Bityutskii et al., 2014; Pavlovic
et al., 2013). Therefore, another proposed mechanism involves the
enhancement of citrate in plants treated with Si. Citrate is one of the
molecules that joins Fe on its transport through the xylem (Rellán-
Álvarez et al., 2010). The increase of citrate concentration in leaf and
root tissues, and in the xylem sap of Si-treated plants, especially the first
day after Fe elimination from the nutrient solution (Bityutskii et al.,
2014; Pavlovic et al., 2013), should engender long-distance transport
and Fe utilization in leaves. Other hypotheses have been tested in cu-
cumber, as the Si influences the Fe chelate reductase and the expression
profile of the strategy of I-related units FRO2, IRT1, and HA1 (Pavlovic
et al., 2013). In general, Si influence on Fe deficiency is mainly as a
consequence of the development of Fe distribution in the plant. Storage
of Fe in the root (apoplastic or plaque) pools seems to be favored by Si
addition, and its remobilization figures to be a chief facet among the
advantageous effects of Si on Fe insufficiency. In addition, based on
new findings, the alleviating effect of Si appears to be more indirect by
affecting the activation of Fe-deficiency-associated genes responsible
for the enhanced root acquisition and tissue mobilization of Fe
(Pavlovic et al., 2013).

Under Fe toxicity conditions, it is apparent that Si stimulates the
oxidizing ability of the roots, changing ferrous iron into ferric iron and
inhibiting a significant absorption of iron while obstructing its toxic
feature (Ma and Takahashi, 2002). A report advised Si taking the role of
facilitating Fe absorption from acidic soils through the discharge of
OH− by the roots when enhanced with Si (Wallace, 1992). Fe toxicity
has been effectively alleviated in rice after Si addition (Ma, 2004; You-
Qiang et al., 2012), mainly by an increase in the Fe precipitation in the
growth media or at root surfaces (iron plaque). The Si addition prob-
ably increased pH and may lead to Fe precipitation. The Fe and Si could
also co-precipitate, as Fe(III)-silicates, or Si may precipitate as nega-
tively charged silica particles (Currie and Perry, 2007), in which the
positively charged Fe may be bound with the consequent Fe depletion
from the solution.

Mn and Si interaction in some plants (Horst and Marschner, 1978; Ji
et al., 1992; Li et al., 1999) has been evaluated. Si furthers the en-
hancement of the oxidizing capacity of rice roots, lending a higher Mn-
oxidation quotient in the rhizosphere and elevating the external pre-
cipitation of foliage (Okuda and Takahashi, 1962). As mentioned pre-
viously for Fe, such deposits could be expended under Mn deficiency
and could ameliorate Mn deficiency. Si helped a homogeneous dis-
tribution of Mn in the leaf, instead of focusing on necrotic sites. A lower
amount of Mn in the apoplast of cowpea was obtained when Si was
added to the medium. This could be expounded through the metal
adsorption on cell walls interceded by the Si deposits (Horst et al.,
1999). Soluble Si in the apoplast may affect the Mn-oxidation state,
promoting its precipitation (Iwasaki et al., 2002). Dragišić Maksimović
et al. (2007) concluded that Si contributes indirectly to a decrease in
OH- in the leaf apoplast upon lowering the free apoplastic Mn2+, thus
regulating the Fenton reaction and protecting plants against Mn toxi-
city.

Si also affects plant Zn nutrition under deficiency stress conditions
(Bityutskii et al., 2014; Li et al., 1999). The Zn solubility in the rhizo-
sphere is controlled through growth medium acidification and excre-
tion of low molecular weight chelating agents by the roots (Sinclair and
Krämer, 2012). There are several evidences that Zn distribution in plant
is altered by the Si supplement in hydroponic and soil investigations
(Bityutskii et al., 2014; Gu et al., 2011, 2012), with both elements
presenting an analogous site in plants (Gu et al., 2012). Si addition
contributed to the root cell wall strength, delaying the Zn2+ transport
to the shoots (Currie and Perry, 2007; Gong et al., 2006; Huang et al.,
2009; Peleg et al., 2010). Si and Zn were mainly sited in the vicinity of
the root endodermis (Gu et al., 2011), precipitated as Zn silicates,
which may in some measure inhibit Zn xylem loading and transport (da
Cunha and do Nascimento, 2009). This precipitate incurred a slow
degradation to SiO2, with Zn accumulated in vacuoles in an indefinite
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shape (Neumann and zur Nieden, 2001). Silicate precipitation on the
plant cell wall (Currie and Perry, 2007) increased the Zn2+-binding
sites, which may enhance Zn2+ adsorption on the silicate deposits
(Wang et al., 2000). Such points toward a detoxifying behavior,
avoiding the metal transport to more sensitive organs inside the plant
(da Cunha and do Nascimento, 2009; Shi et al., 2005). Root Zn deposits
could be used under Zn-deficient settings through the triggering of the
Zn-deficiency mechanism. The enrichment of citrate in plants treated
with Si has been described under Fe deficiency (Bityutskii et al., 2014;
Pavlovic et al., 2013); this citrate could also play a chief role on Zn
allocation in plants. As for Fe and Mn, the Zn pools in the roots could be
more mobile under deficient conditions when Si was supplemented to
the plant, supporting a better distribution of it, which may assist in
ameliorating the Zn deficiency symptoms. As Si and Zn accumulations
were also uncovered in leaves, the remobilization of the nutrient via
phloem could return higher seed and fruit Zn content, which implies a
more efficient use of the available Zn, especially under Zn shortage
(Bityutskii et al., 2014; Hernandez-Apaolaza, 2014).

There are a few studies that reviewed the Si–Cu interaction in plants
(Frantz et al., 2011; Ji et al., 1992; Khandekar and Leisner, 2011; Li
et al., 2008). In Arabidopsis thaliana, Cu toxicity indicators including
leave chlorosis and reduction of the shoot and root biomass were di-
minished by Si addition to the nutrient solution (Khandekar and
Leisner, 2011; Li et al., 2008). Similar discoveries were discerned for
wheat (Nowakowski and Nowakowska, 1997) where the Si shaped the
distribution or bioavailability of Cu within leaves under Cu stress (Li
et al., 2008). The formation of Si deposits on the cell wall increased the
Cu-binding sites and avoided the impact of such high Cu doses on plant
cells. This was proposed to explain this fact, similar to those proposed
for other micronutrient toxicity (Frantz et al., 2011; Liang et al., 2007).
Elevated levels of molecules that bind Cu, as a strategy to decreasing its
toxic effect, were conserved or even augmented when Si was put in.
More than one response, therefore, ought to be started to tolerate Cu
toxicity (Khandekar and Leisner, 2011). Authors proposed that Si assists
in generating additional apoplastic Cu-binding sites, sequestering the
metal and thereby decreasing its toxic impacts (Hernandez-Apaolaza,
2014; Samuels et al., 1991). Si also promotes Cu-binding sites in the
apoplast or cell wall and its incidence on some oxidative mechanisms
induced by Cu deficiency (Samuels et al., 1991).

As regards the rest of the micronutrients, metal root deposits similar
to those of Fe were reported in the literature under toxicity. Liang and
Shen (1994) established in their report that under circumstances of
sufficient or excessive boron (B) concentrations, Si supply steered a
diminution in B uptake, whereas under states of B deficiency, Si supply
helped B uptake in oilseed rape. Amendment of Si to high B soil ef-
fectively mitigated B toxicity in spinach, wheat, and barley by de-
creasing root-to-shoot translocation of B and also by preventing ROS
membrane damages due to the modulation of the activities of anti-
oxidative enzymes (Inal et al., 2009; Karabal et al., 2003).

Although the beneficial role of Si in alleviation of abiotic stress is
well established, little is known of the relevance of Si nutrition under
micro and macroelements deficiency and its underlying mechanisms
are poorly understood. Detailed studies about roots will contribute to
explain the Si role on metal accumulation at non-toxic concentrations
and the possibilities of the accumulated metal to be transported to the
shoot or not. In addition, the effect of Si addition on the accompanying
metal molecules (for example, citrate) that are involved in long-dis-
tance transport in plants also needs attention (Hernandez-Apaolaza,
2014).

5. Si and alleviating other abiotic stresses

Since drought is occasionally associated with high temperatures
(Epstein, 1994; Halford, 2011), Si treatment may be a substitute to
mitigating the damages brought about by drought and heat stresses. In
a study (Agarie et al., 1998), it was observed that electrolyte leakage

caused by high temperature in the leaves of plants treated with Si was
less than those that grown without Si. These researchers attributed this
effect to the involvement of Si in the thermal stability of lipids in cell
membranes; although the actual mechanism of this effect is not well
understood, which needs further study. There are reports that indicate
the role of Si in alleviating the flooding stress in plants. The root of
plants such as rice has a conductive tissue called aerenchyma, which
transports oxygen from the photosynthesis process through the tissue to
the root and thus resists oxygen deficiency under flood conditions
(Kotula et al., 2009a, 2009b). The root of these plants has large
amounts of suberin and lignin in the outer part that prevents radial
oxygen from loss by forming a strong barrier (Pavlovic et al., 2013). Si
through an effect on root anatomy, such as the development of cas-
parian bands in the exodermis and endodermis, and on genes associated
with the synthesis of lignin and suberin, increases the plant's resistance
to flooding stress conditions (Fleck et al., 2010). On the other hand,
since Fe and Mn toxicity occurs under flooding conditions, Si can, by
increasing oxidation power of submerged roots, lead to the oxidation of
Mn2+ and Fe2+ ions and their precipitation on the root surface and,
consequently, the absorption of these ions is decreased by the plant
(Okuda and Takahashi, 1961). Despite the mechanism mentioned, the
precise role of Si in in alleviating flooding stress is still unknown.

It is well-known that Si can decrease stress caused by UV-B radiation
in different plants (Fang et al., 2011; Yao et al., 2011). Stress of UV-B is
one of the most important abiotic stresses, which could influence all
aspect of the physiology and biochemistry of stressed plants. Si, through
the deposition in the space immediately beneath the cuticle layer in
leaves, leads to the formation of a cuticle–Si double layer in leaf blades
(Currie and Perry, 2007). This Si-double layer acts like a glass layer and
reduces the further transmission of UV radiation from the epidermis
(Gatto et al., 1998). In addition, Si can reduce UV-B radiation stress
through oxidation by enhancing antioxidative enzyme activities and
thereby contributing to higher ROS consumption (Shen et al., 2010). In
general, the mechanisms of Si-mediated alleviation of damage caused
by enhanced UV-B stress remain unclear. For example, it is not yet
known whether the protective role of Si is related to the ability of the
plant to increase the formation of the double layer of Si in response to
the UV-B, or only to a side effect of species-specific variations of Si
stored in the plants. In addition, Si's role in the metabolic response to
UV radiation stress, such as biosynthesis of low molecular weight UV
absorbing compounds (e.g., phenolic acid and flavonoids), is still un-
clear (Liang et al., 2015b). Since the increased UV-B radiation greatly
affects the growth and yield of crop plants, studies on the effects of Si
on UV-B-stressed plants to protect crop plants will be interesting and
effective (Tripathi et al., 2014).

Si can increase the rice resistance to lodging through depositing
silica in rice and increasing the thickness of the culm wall and the size
of the vascular bundle (Ma et al., 2001). In addition, by neutralizing the
negative effects of increased N supply on stalk stability and on lodging
susceptibility of rice and wheat, Si can prevent lodging in these plants
(Liang et al., 2015b).

Si is thought to lead to the detoxification of Al in plants through the
formation of hydroxyaluminum silicate (Hodson and Evans, 1995). In a
study (Kidd et al., 2001), the reason for increasing the resistance of
maize to Al toxicity was attributed to higher exudation of Al chelating
catechin and quercetin, as well as malic acid in Si-treated maize plants.
Habibi (2015) showed that foliar-applied Si could effectively alleviate
adverse effects of freezing on grapevine plants via maintaining mem-
brane integrity and alleviating photoinhibition during recovery.

6. Mode of action of Si in alleviating disease stress in plants

6.1. Formation of physical barriers

The formation of physical barriers is one of the mechanisms to
control diseases in plants (Guerriero et al., 2016; Kim et al., 2002; Liang
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et al., 2015c). The precipitation of amorphous silica in plants acts as a
mechanical barrier (Fauteux et al., 2005). The postulation of a potential
physical obstruction formation depends on the type of Si deposition in
foliage, particularly in the cell wall. In its incline movement via apo-
plast, commencing from the roots to the leaves, Si polymerization
transpires in the extracellular spaces, building up on the walls of leaves’
and xylem vessels’ epidermal cells (Fawe et al., 2001; Kim et al., 2002).
Indeed, over the years, it had been generally accepted that polymerized
Si in the plant cell wall and apoplast prevents pathogen penetration
(Fleck et al., 2010). The tomato resistance to Fusarium crown and root
rot caused by Fusarium oxysporum f. sp radicis-lycopersici (C.H. Huang
et al., 2011), the oil palm resistance to basal stem rot caused by Ga-
noderma boninense (Najihah et al., 2015), the coffee resistance to leaf
rust caused by Hemileia vastatrix (Carré‐Missio et al., 2014), and the
belle pepper resistance to Phytophthora blight caused by Phytophthora
capsici (French‐Monar et al., 2010) are some examples that Si through
the physical mechanisms has increased plant resistance to these dis-
eases. In general, our knowledge regarding the mechanism of Si accu-
mulation and its deposition in plant tissues is slightly known. Recent
studies have reported that Si biochemical mechanisms compared to
physical mechanisms play a more important role in increasing plant
resistance to disease stress (Ratnayake et al., 2016; Song et al., 2016),
which require further study in the future.

6.2. Formation of biochemical barriers

Based on previous reports (Wang et al., 2017), Si-mediated re-
sistance of plants to disease involves not only mechanical but also
biochemical defense reactions in Si- amended plants.

Studies attribute another effect of Si on the disease decline to the
establishment of chemical impediments such as (i) enhanced perfor-
mance of enzymes related to resistance (Fortunato et al., 2012) such as
chitinases (Cruz et al., 2013), β-1,3-glucanases (Tatagiba et al., 2014),
peroxidase (Mburu et al., 2016), polyphenol oxidases (PPO), phenyla-
lanine ammonia lyase (PAL), involved in the synthesis of plant sec-
ondary antimicrobial substances, (G. Zhang et al., 2013), uperoxide
dismutase, ascorbate peroxidase, glutathione reductase, catalase, li-
poxygenase, and glucanase (Waewthongrak et al., 2015). Since the cell
wall of fungi consists of the carbohydrates chitin and β-1,3-glucan, Si-
induced chitinases and β-1,3-glucanases enzymes can hydrolyze these
compounds to oligosaccharides and, as a result, the plant's defense re-
sponses is elicited (Keen and Yoshikawa, 1983). In the study performed
by Cruz et al. (2013), an increase in chitinases activity occurred early in
the onset of Asian soybean rust symptoms for the plants treated with Si.
Peroxidase (POX) plays a role in the host defense response through the
production of antimicrobial quantities of H2O2, in cell wall lignification
or cross-linking with the cell wall proteins (Torres et al., 2006). This
enzyme is also linked to the polymerization of phenolics that increases
tissue lignification (Vidhyasekaran, 1988). An increase in the amount of
POX transcripts in rice plants susceptible to Pyricularia grisea and sup-
plied with Si was reported by Datnoff et al. (2007). Rice and cucumber
plants supplied with Si and inoculated with Bipolaris oryzae and Podo-
sphaera xantii, respectively, showed an increase in the activities of POX
and chitinases (Dallagnol et al., 2011). The role of PPO in disease re-
sistance is to oxidize phenolic compounds to quinines, which are often
more toxic to plant pathogens than the original phenols. PPO also plays
a significant role in lignin biosynthesis (Song et al., 2016).

In a study (Silva et al., 2010), resistance to disease in Si-treated
plants increased compared to untreated plants. The researchers attrib-
uted this effect to increasing the activity of PAL caused by Si. Increase
in this enzyme, in turn, leads to an accumulation of total soluble phe-
nolic and lignin-thioglycolic acid derivatives in the leaves of plants,
which are linked to low disease incidence; (ii) increased expression of
genes related with plant defense mechanisms against pests and dis-
orders, the genes encoding proline-rich protein (PRP1) (Kauss et al.,
2003; Rodrigues et al., 2005), and the genes that encode chief enzymes

in the production of phenylpropanoids (e.g., phenylalanine ammonia
lyase, cinnamyl alcohol dehydrogenase, and chalcone synthase) (Shetty
et al., 2012); (iii) augmented production of phenolic compounds
(Tatagiba et al., 2014), callose, or methylaconitate (phytoalexins) and
lignin (Fauteux et al., 2005); (iv) increased concentrations of anti-
microbial flavonoids, polyphenol, and anthocyanin (Pozza et al., 2015;
Resende et al., 2013); and (v) regulated systemic signals, such as sal-
icylic acid (SA), jasmonic acid (JA), and ethylene (ET) (Van Bockhaven
et al., 2015). It has been known that SA (active against biotrophic and
hemibiotrophic pathogens), JA, and ET (involved against necrotrophic
pathogens) are involvement in plant immunity networks and regulate
plant defense responses (Devadas et al., 2002; Pieterse et al., 2012).

Some of the examples of Si-enhanced biochemical resistance include
the soybean resistance to target spot caused by Corynespora cassiicola
(by inducing chitinases, β-1–3-glucanases, PAL, POX, and PPO)
(Fortunato et al., 2015), the perennial ryegrass resistance to gray leaf
spot caused by Magnaporthe oryzae (by defense-related antimicrobial
phenols or lignin-associated polyphenolic compounds) (Rahman et al.,
2015), the wheat resistance to blast caused by Pyricularia grisea (by
accumulation of phenolic and lignin or ligninthioglycolic acid deriva-
tives) (Filha et al., 2011), the Arabidopsis resistance to powdery mildew
caused by Erysiphe cichoracearum (by the biosynthesis of SA, JA, and ET
in leaves) (Fauteux et al., 2006), and the tomato resistance to Ralstonia
solanacearum (by upregulating the expression of genes involved in de-
fense and stress responses) (Ghareeb et al., 2011).

Although there are many studies that show that Si has been able to
increase the plant's resistance to diseases through physical, biochemical
and molecular mechanisms (Wang et al., 2017), there is still not much
information about the mechanisms which by Si regulates plant– mi-
crobe interactions such as plant signaling transduction and tran-
scriptome regulation of defense-related pathways which are necessary
to further study in the future. In addition, compared to numerous re-
ports on Si-enhanced resistance to fungal diseases, there is little in-
formation on Si and bacterial disease interactions in plants (Song et al.,
2016), which needs further study.

6.3. Effect on plant mineral nutrition

It is known that plants with balanced nutrition are more resistant to
diseases. As mentioned above, Si can increase the amount of essential
nutrients for plant (Section 2.4.) (Pozza et al., 2015). The silicate anion
works on soils as a competitive anion for the uptake sites, raising the
availability of sulfate, nitrate, and phosphate in soil with elevated
ability to retain these anions (Pozza et al., 2015). As an example, the P
desorbed from the reactive surfaces of the soil components becomes
available in the soil solution and can be incorporated into plants, thus
going into metabolic pathways to reinforce the resistance of plants
against diseases upon forming defense walls with the given nutrients.

As mentioned above, Si is the element which is able to enhance
resistance to multiple stresses. When present excessively, Si does not
pose any harm to plants (Epstein, 1994) since Si is noncorrosive and
pollution-free. Si fertilizers are, therefore, high-quality fertilizers that
can be used for cultivating an ecologically sound agronomy (Zhu and
Gong, 2014). From an economic perspective, Si fertilizers are also re-
latively affordable, assuming 10–20% of the cost of other fertilizers
(Feng, 2000). It is then vital to utilize Si fertilizers (both organic sources
such as biochar, rice hull ash, and livestock manure composts, and in-
organic ones such as wollastonite, silica gel, si-rich slag, silicic acid,
sodium silicate, potassium silicate, calcium silicate, calcium silicate
slag, amorphus silica, etc.) in areas lacking in silicon in order for them
to experience both its economic and ecological profits. The application
of Si may be one of the available pathways to improve crop growth and
its production in arid or semi-arid areas (Meena et al., 2014a).
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7. Conclusions and future prospects

A thorough review of available literature showed that Si could sti-
mulate plant growth and alleviate various biotic and abiotic stresses in
plants. It seems that the use of Si in agriculture will be a sustainable
strategy for the alleviation of biotic and abiotic stresses in the future. In
addition, the utilization of Si may result in the promotion of plant
health and may play a significant role in low-input sustainable agri-
culture for both food and nonfood crops.

Based on the knowledge generated up to now, we suggest several
future avenues of research approaches: (i) although the current un-
derstanding of how this overlooked element affects plants against pa-
thogen infections, pest attacks, and abiotic stresses has advanced, the
exact mechanism(s) by which it modulates plant physiology through
the potentiation of host defense mechanisms still needs further in-
vestigation at the genomic, metabolomic, and proteomic levels (Debona
et al., 2017). Further studies are required to explore the effect of Si on
microbial gene expression and plant biochemistry; (ii) comparative
studies of interactions between Si and plant, now lacking, would shed
light on the mechanisms governing biotic and abiotic stresses; (iii) the
most important aspect for further studies on Si in plant biology should
be focused on making full use of the role of Si in conferring tolerance in
plants against abiotic stresses, and thus their roles in environmental
remediation; (iv) there is not any information on the metabolically
active roles of Si in plants under abiotic and biotic stress conditions,
particularly on the molecular aspects of plants and Si-mediated nu-
trient; (v) the role of Si in alleviating biotic as well as abiotic stresses is
known. However, the potential of Si- nanoparticle (SiNP) in regulating
abiotic stress and associated mechanisms have not yet been explored
(Tripathi et al., 2017), which needs further study; (vi) there is a need of
applied research to know the optimum Si concentration and suitable
time and methods of Si application on the crop plants specially when
plant is under abiotic and biotic stress conditions (Chanchal Malhotra
et al., 2016); (vii) Above studies showed that Si was applied under a
stress separately and in short-term but plants are exposed to multiple
stress simultaneously in nature. Hence, since most of the environmental
stresses such as salinity, drought, heavy metal toxicity, etc. are present
at the same time in agricultural fields, the study of Si effect on in-
creasing resistance to various stresses is suggested simultaneously; (viii)
most studies have focused on the effect of Si on the Si-accumulating
plants. It is suggested that this research be also carried out on less Si-
accumulating plants to determine whether the mechanisms determined
to alleviate stress in Si-accumulating plants can also work in plants that
do not accumulate this element?; (ix) although different types of Si
transporters for Si uptake have been identified from several plant spe-
cies, the transporter or channel protein responsible for Si loading re-
mains unknown. Moreover, the Si transporters identified so far are
mostly from monocots. Therefore, more work is needed to compare and
clarify the process of Si absorption and transport (including Si xylem
loading) in different plant species/cultivars that exhibit different Si
accumulation (e.g., monocots versus dicots) (Zhu and Gong, 2014); (x)
further study is required to clarify the details of the relationship be-
tween the impact of Si on root anatomy (such as the development of
casparian bands and suberization, and lignification) and Si enhanced
tolerance to environmental stresses. At the subcellular level, most Si-
related research has concentrated on the cell wall. It would be inter-
esting to investigate the distribution of Si in the cell nucleus and or-
ganelles, which may help explain the biological roles of Si in enhancing
plant tolerance to environmental stress; (xi) studies related to the ef-
fects of biogenic silica and its nanoparticles on proteomics would be
interesting, and results may further contribute to the understanding of
mechanisms of Si-mediated impact on stressed as well as non-stressed
crop plants. Since Si recycling and its effects on proteomics and genetic
engineering are still lacking, it would also be interesting to investigate
these aspects (Tripathi et al., 2014); and (xii) it is needed to study the
compound use of Si and silica solubilizing bacteria to alleviate different

abiotic and biotic stresses and compare their effects on plant as sepa-
rately and dually. The underlying mechanisms of Si regulated plant–-
microbe interactions have not been identified so far in higher plants.

In general, developing more detailed fundamental knowledge about
the interactions between plant and Si would facilitate a better under-
standing of alleviating abiotic and biotic stresses and perhaps would
allow better predictions regarding the plant response. We anticipated
that there would be a growing interest to study the mechanisms of Si-
mediated stress tolerance in plants in near future. Taken together, well-
designed, large-scale and long-term field trials are required to evaluate
the feasibility of Si application in alleviating abiotic and biotic stresses
and economic feasibility of different Si sources should also be in-
vestigated.
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